Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 373, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37400761

RESUMO

BACKGROUND: Protein kinase CK2 activity is implicated in the pathogenesis of various hematological malignancies like Acute Myeloid Leukemia (AML) that remains challenging concerning treatment. This kinase has emerged as an attractive molecular target in therapeutic. Antitumoral peptide CIGB-300 blocks CK2 phospho-acceptor sites on their substrates but it also binds to CK2α catalytic subunit. Previous proteomic and phosphoproteomic experiments showed molecular and cellular processes with relevance for the peptide action in diverse AML backgrounds but earlier transcriptional level events might also support the CIGB-300 anti-leukemic effect. Here we used a Clariom S HT assay for gene expression profiling to study the molecular events supporting the anti-leukemic effect of CIGB-300 peptide on HL-60 and OCI-AML3 cell lines. RESULTS: We found 183 and 802 genes appeared significantly modulated in HL-60 cells at 30 min and 3 h of incubation with CIGB-300 for p < 0.01 and FC > = │1.5│, respectively; while 221 and 332 genes appeared modulated in OCI-AML3 cells. Importantly, functional enrichment analysis evidenced that genes and transcription factors related to apoptosis, cell cycle, leukocyte differentiation, signaling by cytokines/interleukins, and NF-kB, TNF signaling pathways were significantly represented in AML cells transcriptomic profiles. The influence of CIGB-300 on these biological processes and pathways is dependent on the cellular background, in the first place, and treatment duration. Of note, the impact of the peptide on NF-kB signaling was corroborated by the quantification of selected NF-kB target genes, as well as the measurement of p50 binding activity and soluble TNF-α induction. Quantification of CSF1/M-CSF and CDKN1A/P21 by qPCR supports peptide effects on differentiation and cell cycle. CONCLUSIONS: We explored for the first time the temporal dynamics of the gene expression profile regulated by CIGB-300 which, along with the antiproliferative mechanism, can stimulate immune responses by increasing immunomodulatory cytokines. We provided fresh molecular clues concerning the antiproliferative effect of CIGB-300 in two relevant AML backgrounds.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Linhagem Celular Tumoral , NF-kappa B , Proteômica , Peptídeos/farmacologia , Perfilação da Expressão Gênica , Apoptose , Leucemia Mieloide Aguda/genética , Citocinas
2.
Viruses ; 14(8)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36016303

RESUMO

CIGB-300 is a clinical-grade anti-Protein Kinase CK2 peptide, binding both its substrate's phospho-acceptor site and the CK2α catalytic subunit. The cyclic p15 inhibitory domain of CIGB-300 was initially selected in a phage display library screen for its ability to bind the CK2 phospho-acceptor domain ofHPV-16 E7. However, the actual role of this targeting in CIGB-300 antitumoral mechanism remains unexplored. Here, we investigated the physical interaction of CIGB-300 with HPV-E7 and its impact on CK2-mediated phosphorylation. Hence, we studied the relevance of targeting E7 phosphorylation for the cytotoxic effect induced by CIGB-300. Finally, co-immunoprecipitation experiments followed by western blotting were performed to study the impact of the peptide on the E7-pRB interaction. Interestingly, we found a clear binding of CIGB-300 to the N terminal region of E7 proteins of the HPV-16 type. Accordingly, the in vivo physical interaction of the peptide with HPV-16 E7 reduced CK2-mediated phosphorylation of E7, as well as its binding to the tumor suppressor pRB. However, the targeting of E7 phosphorylation by CIGB-300 seemed to be dispensable for the induction of cell death in HPV-18 cervical cancer-derived C4-1 cells. These findings unveil novel molecular clues to the means by which CIGB-300 triggers cell death in cervical cancer cells.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Neoplasias da Retina , Retinoblastoma , Neoplasias do Colo do Útero , Alphapapillomavirus/metabolismo , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Peptídeos/farmacologia , Peptídeos Cíclicos
3.
Front Mol Biosci ; 9: 834814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359604

RESUMO

Protein kinase CK2 is a highly pleiotropic and ubiquitously expressed Ser/Thr kinase with instrumental roles in normal and pathological states, including neoplastic phenotype in solid tumor and hematological malignancies. In line with previous reports, CK2 has been suggested as an attractive prognostic marker and molecular target in acute myeloid leukemia (AML), a blood malignant disorder that remains as an unmet medical need. Accordingly, this work investigates the complex landscape of molecular and cellular perturbations supporting the antileukemic effect exerted by CK2 inhibition in AML cells. To identify and functionally characterize the proteomic profile differentially modulated by the CK2 peptide-based inhibitor CIGB-300, we carried out LC-MS/MS and bioinformatic analysis in human cell lines representing two differentiation stages and major AML subtypes. Using this approach, 109 and 129 proteins were identified as significantly modulated in HL-60 and OCI-AML3 cells, respectively. In both proteomic profiles, proteins related to apoptotic cell death, cell cycle progression, and transcriptional/translational processes appeared represented, in agreement with previous results showing the impact of CIGB-300 in AML cell proliferation and viability. Of note, a group of proteins involved in intracellular redox homeostasis was specifically identified in HL-60 cell-regulated proteome, and flow cytometric analysis also confirmed a differential effect of CIGB-300 over reactive oxygen species (ROS) production in AML cells. Thus, oxidative stress might play a relevant role on CIGB-300-induced apoptosis in HL-60 but not in OCI-AML3 cells. Importantly, these findings provide first-hand insights concerning the CIGB-300 antileukemic effect and draw attention to the existence of both common and tailored response patterns triggered by CK2 inhibition in different AML backgrounds, a phenomenon of particular relevance with regard to the pharmacologic blockade of CK2 and personalized medicine.

4.
Biomedicines ; 11(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36672551

RESUMO

Large cell lung carcinoma (LCLC) is one form of NSCLC that spreads more aggressively than some other forms, and it represents an unmet medical need. Here, we investigated for the first time the effect of the anti-CK2 CIGB-300 peptide in NCI-H460 cells as an LCLC model. NCI-H460 cells were highly sensitive toward CIGB-300 cytotoxicity, reaching a peak of apoptosis at 6 h. Moreover, CIGB-300 slightly impaired the cell cycle of NCI-H460 cells. The CIGB-300 interactomics profile revealed in more than 300 proteins that many of them participated in biological processes relevant in cancer. Interrogation of the CK2 subunits targeting by CIGB-300 indicated the higher binding of the peptide to the CK2α' catalytic subunit by in vivo pull-down assays plus immunoblotting analysis and confocal microscopy. The down-regulation of both phosphorylation and protein levels of the ribonuclear protein S6 (RPS6) was observed 48 h post treatment. Altogether, we have found that NCI-H460 cells are the most CIGB-300-sensitive solid tumor cell line described so far, and also, the findings we provide here uncover novel features linked to CK2 targeting by the CIGB-300 anticancer peptide.

5.
Mol Med ; 27(1): 161, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930105

RESUMO

BACKGROUND: Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. METHODS: Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. RESULTS: Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. CONCLUSIONS: Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.


Assuntos
COVID-19/metabolismo , Biologia Computacional/métodos , Animais , Células CACO-2 , Chlorocebus aethiops , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/uso terapêutico , Peptídeos Cíclicos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Células Vero , Tratamento Farmacológico da COVID-19
6.
Biomedicines ; 9(7)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356831

RESUMO

Protein kinase CK2 has emerged as an attractive therapeutic target in acute myeloid leukemia (AML), an advent that becomes particularly relevant since the treatment of this hematological neoplasia remains challenging. Here we explored for the first time the effect of the clinical-grade peptide-based CK2 inhibitor CIGB-300 on AML cells proliferation and viability. CIGB-300 internalization and subcellular distribution were also studied, and the role of B23/nucleophosmin 1 (NPM1), a major target for the peptide in solid tumors, was addressed by knock-down in model cell lines. Finally, pull-down experiments and phosphoproteomic analysis were performed to study CIGB-interacting proteins and identify the array of CK2 substrates differentially modulated after treatment with the peptide. Importantly, CIGB-300 elicited a potent anti-proliferative and proapoptotic effect in AML cells, with more than 80% of peptide transduced cells within three minutes. Unlike solid tumor cells, NPM1 did not appear to be a major target for CIGB-300 in AML cells. However, in vivo pull-down experiments and phosphoproteomic analysis evidenced that CIGB-300 targeted the CK2α catalytic subunit, different ribosomal proteins, and inhibited the phosphorylation of a common CK2 substrates array among both AML backgrounds. Remarkably, our results not only provide cellular and molecular insights unveiling the complexity of the CIGB-300 anti-leukemic effect in AML cells but also reinforce the rationale behind the pharmacologic blockade of protein kinase CK2 for AML-targeted therapy.

7.
Mol Cell Biochem ; 470(1-2): 63-75, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32405972

RESUMO

Casein-kinase CK2 is a Ser/Thr protein kinase that fosters cell survival and proliferation of malignant cells. The CK2 holoenzyme, formed by the association of two catalytic alpha/alpha' (CK2α/CK2α') and two regulatory beta subunits (CK2ß), phosphorylates diverse intracellular proteins partaking in key cellular processes. A handful of such CK2 substrates have been identified as targets for the substrate-binding anticancer peptide CIGB-300. However, since CK2ß also contains a CK2 phosphorylation consensus motif, this peptide may also directly impinge on CK2 enzymatic activity, thus globally modifying the CK2-dependent phosphoproteome. To address such a possibility, firstly, we evaluated the potential interaction of CIGB-300 with CK2 subunits, both in cell-free assays and cellular lysates, as well as its effect on CK2 enzymatic activity. Then, we performed a phosphoproteomic survey focusing on early inhibitory events triggered by CIGB-300 and identified those CK2 substrates significantly inhibited along with disturbed cellular processes. Altogether, we provided here the first evidence for a direct impairment of CK2 enzymatic activity by CIGB-300. Of note, both CK2-mediated inhibitory mechanisms of this anticancer peptide (i.e., substrate- and enzyme-binding mechanism) may run in parallel in tumor cells and help to explain the different anti-neoplastic effects exerted by CIGB-300 in preclinical cancer models.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caseína Quinase II/metabolismo , Neoplasias Pulmonares/metabolismo , Peptídeos Cíclicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Sistema Livre de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Microscopia de Fluorescência , Fosforilação , Ligação Proteica , Proteoma , Proteínas Recombinantes/metabolismo
8.
Cancers (Basel) ; 12(6)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471246

RESUMO

Despite remarkable advances in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), relapsed cases are still a major challenge. Moreover, even successful cases often face long-term treatment-associated toxicities. Targeted therapeutics may overcome these limitations. We have previously demonstrated that casein kinase 2 (CK2)-mediated phosphatase and tensin homologue (PTEN) posttranslational inactivation, and consequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling hyperactivation, leads to increased T-ALL cell survival and proliferation. We also revealed the existence of a crosstalk between CK2 activity and the signaling mediated by interleukin 7 (IL-7), a critical leukemia-supportive cytokine. Here, we evaluated the impact of CIGB-300, a the clinical-grade peptide-based CK2 inhibitor CIGB-300 on T-ALL biology. We demonstrate that CIGB-300 decreases the viability and proliferation of T-ALL cell lines and diagnostic patient samples. Moreover, CIGB-300 overcomes IL-7-mediated T-ALL cell growth and viability, while preventing the positive effects of OP9-delta-like 1 (DL1) stromal support on leukemia cells. Signaling and pull-down experiments indicate that the CK2 substrate nucleophosmin 1 (B23/NPM1) and CK2 itself are the molecular targets for CIGB-300 in T-ALL cells. However, B23/NPM1 silencing only partially recapitulates the anti-leukemia effects of the peptide, suggesting that CIGB-300-mediated direct binding to CK2, and consequent CK2 inactivation, is the mechanism by which CIGB-300 downregulates PTEN S380 phosphorylation and inhibits PI3K/Akt signaling pathway. In the context of IL-7 stimulation, CIGB-300 blocks janus kinase / signal transducer and activator of transcription (JAK/STAT) signaling pathway in T-ALL cells. Altogether, our results strengthen the case for anti-CK2 therapeutic intervention in T-ALL, demonstrating that CIGB-300 (given its ability to circumvent the effects of pro-leukemic microenvironmental cues) may be a valid tool for clinical intervention in this aggressive malignancy.

9.
Semin Oncol ; 45(1-2): 58-67, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318085

RESUMO

Protein kinase CK2, formerly referred to as casein kinase II, is a serine/threonine kinase often found overexpressed in solid tumors and hematologic malignancies that phosphorylates many substrates integral to the hallmarks of cancer. CK2 has emerged as a viable oncology target having been experimentally validated with different kinase inhibitors, including small molecule ATP-competitors, synthetic peptides, and antisense oligonucleotides. To date only two CK2 inhibitors, CIGB-300 and CX-4945, have entered the clinic in phase 1-2 trials. This review provides information on CIGB-300, a cell-permeable cyclic peptide that inhibits CK2-mediated phosphorylation by targeting the substrate phosphoacceptor domain. We review data that support the concept of CK2 as an anticancer target, address the mechanism of action, and summarize preclinical studies showing antiangiogenic and antimetastatic effects as well as synergism with anticancer drugs in preclinical models. We also summarize early clinical research (phase 1/2 trials) of CIGB-300 in cervical cancer, including data in combination with chemoradiotherapy. The clinical data demonstrate the safety, tolerability, and clinical effects of intratumoral injections of CIGB-300 and provide the foundation for future phase 3 clinical trials in locally advanced cervical cancer in combination with standard chemoradiotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos Cíclicos/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Ensaios Clínicos como Assunto , Humanos , Neoplasias/metabolismo , Peptídeos Cíclicos/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
10.
J Pept Sci ; 24(6): e3081, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29676523

RESUMO

CIGB-300 is a first-in-class synthetic peptide-based drug of 25 amino acids currently undergoing clinical trials in cancer patients. It contains an amidated disulfide cyclic undecapeptide fused to the TAT cell-penetrating peptide through a beta-alanine spacer. CIGB-300 inhibits the CK2-mediated phosphorylation leading to apoptosis of tumor cells in vitro, and in vivo in cancer patients. Despite the clinical development of CIGB-300, the characterization of peptide-related impurities present in the active pharmaceutical ingredient has not been reported earlier. In the decision tree of ICHQ3A(R2) guidelines, the daily doses intake, the abundance, and the identity of the peptide-related species are pivotal nodes that define actions to be taken (reporting, identification, and qualification). For this, purity was first assessed by reverse-phase chromatography (>97%) and low-abundance impurities (≤0.27%) were collected and identified by mass spectrometry. Most of the impurities were generated during peptide synthesis, the spontaneous air oxidation of the reduced peptide, and the lyophilization step. The most abundant impurity, with no biological activity, was the full-length peptide containing Met17 transformed into a sulfoxide residue. Interestingly, parallel and antiparallel dimers of CIGB-300 linked by 2 intermolecular disulfide bonds exhibited a higher antiproliferative activity than the CIGB-300 monomer. Likewise, very low abundance trimers and tetramers of CIGB-300 linked by disulfide bonds (≤0.01%) were also detected. Here we describe for the first time the presence of active dimeric species whose feasibility as novel CIGB-300 derived entities merits further investigation.


Assuntos
Antineoplásicos/farmacologia , Peptídeos Penetradores de Células/farmacologia , Peptídeos Cíclicos/farmacologia , Peptídeos/farmacologia , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/síntese química , Técnicas de Química Sintética/métodos , Humanos , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Peptídeos Cíclicos/síntese química , Fosforilação/efeitos dos fármacos
11.
Cancer Cell Int ; 17: 42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373828

RESUMO

BACKGROUND: Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. METHODS: The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. RESULTS: We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic ß-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard cisplatin treatment. We established a resistant cell line that showed higher p65 nuclear levels after cisplatin treatment as compared with the parental cell line. Remarkably, the cisplatin-resistant cell line became more sensitive to CIGB-300 treatment. CONCLUSIONS: Our data provide new insights into CIGB-300 mechanism of action and suggest clinical potential on current NSCLC therapy.

12.
Lung Cancer ; 107: 14-21, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27319334

RESUMO

OBJECTIVES: Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models. MATERIALS AND METHODS: Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted. RESULTS AND CONCLUSION: We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Administração Intravenosa , Inibidores da Angiogênese/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/tratamento farmacológico , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/metabolismo , Fosforilação/efeitos dos fármacos
13.
Rev. cuba. hematol. inmunol. hemoter ; 32(2): 0-0, abr.-jun. 2016. ilus, tab
Artigo em Espanhol | CUMED | ID: cum-64602

RESUMO

Introducción: el CIGB-300 es un péptido sintético capaz de producir apoptosis en células tumorales.Objetivos: explorar la seguridad del CIGB-300 administrado por vía intravenosa en pacientes con hemopatías malignas.Metodología : se realizó un ensayo clínico fase I, multicéntrico, no aleatorizado, adaptativo, con un solo grupo de tratamiento y escalado de dosis en el mismo paciente (Registro No. 05.013.12.B). Los eventos adversos se clasificaron según la versión 4.03 de Terminología de los Criterios Comunes para Eventos Adversos. Se seleccionaron pacientes con edad igual o mayor a 18 años, no candidatos a trasplante de médula ósea, con leucemias agudas refractarias o en recaída, leucemia aguda mielobástica del anciano y síndromes mielodisplásticos con exceso de blastos, que tuvieron ECOG ≤ 3 y aceptaron participar en la investigación. Se consideraron como criterios de exclusión: la leucemia promielocítica, enfermedades crónicas descompensadas, antecedentes alérgicos graves, embarazo, puerperio y lactancia. Para las variables cuantitativas, se estimaron medidas de tendencia central y para las cualitativas la distribución de frecuencias.Resultados: de 10 pacientes incluidos, 6 realizaron el tratamiento con los cinco niveles de dosis. Se presentaron 94 tipos de eventos adversos, la mayoría de carácter sistémico, con 619 notificaciones. El prurito y el eritema localizados fueron los eventos más comunes, seguidos de la hipertensión arterial. Los eventos se presentaron con mayor frecuencia el primer día de cada ciclo y no se detectó su aumento al incrementar la dosis del producto. El 87,7 por ciento se consideraron eventos leves y el 61,6 por ciento con causalidad muy probable. Se presentaron 15 eventos adversos graves, pero solo uno fue relacionado con la administración del CIGB 300.Conclusiones: la administración intravenosa del CIGB-300 fue segura y bien tolerada. El escalado de dosis no aumentó la toxicidad del producto(AU)


Assuntos
Humanos , Biossíntese Peptídica , Ensaios Clínicos Fase I como Assunto/métodos , Apoptose/fisiologia , Biópsia por Agulha/métodos , Medula Óssea/patologia
14.
Rev. cuba. hematol. inmunol. hemoter ; 32(2): 236-248, abr.-jun. 2016. ilus, tab
Artigo em Espanhol | LILACS, CUMED | ID: biblio-908289

RESUMO

Introducción: el CIGB-300 es un péptido sintético capaz de producir apoptosis en células tumorales. Objetivos: explorar la seguridad del CIGB-300 administrado por vía intravenosa en pacientes con hemopatías malignas. Metodología : se realizó un ensayo clínico fase I, multicéntrico, no aleatorizado, adaptativo, con un solo grupo de tratamiento y escalado de dosis en el mismo paciente (Registro No. 05.013.12.B). Los eventos adversos se clasificaron según la versión 4.03 de Terminología de los Criterios Comunes para Eventos Adversos. Se seleccionaron pacientes con edad igual o mayor a 18 años, no candidatos a trasplante de médula ósea, con leucemias agudas refractarias o en recaída, leucemia aguda mielobástica del anciano y síndromes mielodisplásticos con exceso de blastos, que tuvieron ECOG ≤ 3 y aceptaron participar en la investigación. Se consideraron como criterios de exclusión: la leucemia promielocítica, enfermedades crónicas descompensadas, antecedentes alérgicos graves, embarazo, puerperio y lactancia. Para las variables cuantitativas, se estimaron medidas de tendencia central y para las cualitativas la distribución de frecuencias. Resultados: de 10 pacientes incluidos, 6 realizaron el tratamiento con los cinco niveles de dosis. Se presentaron 94 tipos de eventos adversos, la mayoría de carácter sistémico, con 619 notificaciones. El prurito y el eritema localizados fueron los eventos más comunes, seguidos de la hipertensión arterial. Los eventos se presentaron con mayor frecuencia el primer día de cada ciclo y no se detectó su aumento al incrementar la dosis del producto. El 87,7 por ciento se consideraron eventos leves y el 61,6 por ciento con causalidad muy probable. Se presentaron 15 eventos adversos graves, pero solo uno fue relacionado con la administración del CIGB 300. Conclusiones: la administración intravenosa del CIGB-300 fue segura y bien tolerada. El escalado de dosis no aumentó la toxicidad del producto(AU)


Introduction: CIGB-300 is a synthetic peptide capable of producing apoptosis in tumor cells. Objectives: To explore the safety of CIGB-300 administered intravenously in patients with hematological malignancies (Registry No. 05.013.12.B). Methodology : A multicenter, non-randomized, adaptive, with an only treatment group (intravenous administration of the investigational product and dose escalation in the same patient), phase I clinical trial was conducted. Adverse events were classified according to the version 4.03 of Common Terminology Criteria for Adverse Events . Patients aged 18 years or older were selected, not candidates for bone marrow transplantation, with refractory or relapsed acute leukemias, acute myeloblastic leukemia of elderly, and myelodysplastic syndromes with blast excess, who had ECOG ≤ 3 and agreed to participate in the investigation. We considered as exclusion criteria: acute promyelocytic leukemia, decompensated chronic diseases, severe allergic history, pregnancy, postpartum and breastfeeding. For quantitative variables, measures of central tendency and qualitative distribution of frequencies were estimated. Results: Of 10 patients included 6 received treatment with five dose levels. Ninety four types of adverse events were present, most systemic, with 619 notifications. Localized itching and rash were the most common events, followed by high blood pressure. The events occurred more frequently on the first day of each cycle and no increase was detected when the dose of the product was rised. Minor events were 87,7 percent and 61,6 percent with probable causality. Fifteen serious adverse events occurred, but only one was related to the administration of CIGB 300. Conclusions: Intravenous administration of CIGB-300 was safe and well tolerated. Dose escalation did not increase the toxicity of the product(AU)


Assuntos
Humanos , Biossíntese Peptídica , Biópsia por Agulha/métodos , Apoptose
15.
Biochim Biophys Acta ; 1854(10 Pt B): 1694-707, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25936516

RESUMO

Protein kinase CK2 is a tetrameric enzyme composed of two catalytic (α/α') and two regulatory (ß) subunits. It has a global prosurvival function, especially in cancer, and represents an attractive therapeutic target. Most CK2 inhibitors available so far are ATP-competitive compounds; however, the possibility to block only the phosphorylation of few substrates has been recently explored, and a compound composed of a Tat cell-penetrating peptide and an active cyclic peptide, selected for its ability to bind to the CK2 substrate E7 protein of human papilloma virus, has been developed [Perea et al., Cancer Res. 2004; 64:7127-7129]. By using a similar chimeric peptide (CK2 modulatory chimeric peptide, CK2-MCP), we performed a study to dissect its molecular mechanism of action and the signaling pathways that it affects in cells. We found that it directly interacts with CK2 itself, counteracting the regulatory and stabilizing functions of the ß subunit. Cell treatment with CK2-MCP induces a rapid decrease of the amount of CK2 subunits, as well as of other signaling proteins. Concomitant cell death is observed, more pronounced in tumor cells and not accompanied by apoptotic events. CK2 relocalizes to lysosomes, whose proteases are activated, while the proteasome machinery is inhibited. Several sequence variants of the chimeric peptide have been also synthesized, and their effects compared to those of the parental peptide. Intriguingly, the Tat moiety is essential not only for cell penetration but also for the in vitro efficacy of the peptide. We conclude that this class of chimeric peptides, in addition to altering some properties of CK2 holoenzyme, affects several other cellular targets, causing profound perturbations of cell biology. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Peptídeos Penetradores de Células/química , Humanos , Proteínas E7 de Papillomavirus/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes de Fusão/química , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato
16.
Mol Clin Oncol ; 2(6): 935-944, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25279177

RESUMO

CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...